Browse by author
Lookup NU author(s): Rachel Williams, Professor Anil Wipat, Professor Colin Harwood
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The recently published genome sequence of Bacillus anthracis Ames has facilitated the prediction of proteins associated with the virulence of this bacterium. The aim of this study was to define reference maps for the extracellular and cytoplasmic proteomes of the avirulent B. anthracis strain UM23C1-2 that are useful for physiological studies and the development of improved vaccines. Using 2-DE and subsequent MALDI-TOF-TOF MS, 64 proteins were identified in the extracellular proteome, only 29 of which were predicted to be exported into the culture medium. The latter included chitinases, proteases, nucleotidases, sulfatases, phosphatases and proteins of unknown function. Of the remaining proteins in the culture medium, 18 were predicted to be associated with the cell wall or anchored on the trans side of the cytoplasmic membrane while 17 other proteins lacked identifiable export signals and were predicted to be cytoplasmic proteins. Among the S-layer proteins, Sap and Eag account for 10% of the total extracellular proteome. Many of the proteins are predicted to contribute to the virulence and antigenic signature of B. anthracis. We have also studied the composition of the cytoplasmic proteome, identifying 300 distinct proteins. The most abundant cytoplasmic proteins are primarily those involved in glycolysis, amino acid metabolism, protein translation, protein folding and stress adaptation. The presence of a variety of proteases, peptidases, peptide binding proteins, as well as enzymes required for the metabolism of amino acids, suggests that B. anthracis is adapted to life in a protein-rich environment rather than the soil. We therefore speculate that proteases and peptidases could be useful targets for the development of improved vaccines. In addition, both of these B. anthracis compartment-specific proems can be used as reference maps to monitor changes in the production of secreted and cytosolic proteins that occur, for example, during growth in macrophages. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.
Author(s): Antelmann H, Williams RC, Miethke M, Wipat A, Albrecht D, Harwood CR, Hecker M
Publication type: Article
Publication status: Published
Journal: Proteomics
Year: 2005
Volume: 5
Issue: 14
Pages: 3684-3695
Print publication date: 01/09/2005
ISSN (print): 1615-9853
ISSN (electronic): 1615-9861
Publisher: Wiley-Blackwell
URL: http://dx.doi.org/10.1002/pmic.200401218
DOI: 10.1002/pmic.200401218
PubMed id: 16121336
Altmetrics provided by Altmetric