Toggle Main Menu Toggle Search

Open Access padlockePrints

Adaptive multivariate statistical process control for monitoring time-varying processes

Lookup NU author(s): Dr Sang Choi, Professor Elaine Martin, Emeritus Professor Julian Morris


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


An adaptive multivariate statistical process monitoring (MSPC) approach is described for the monitoring of a process with incurs operating condition changes. Samplewise and blockwise recursive formulas for updating a weighted mean and covariance matrix are derived. By utilizing these updated mean and covariance structures and the current model, a new model is derived recursively. On the basis of the updated principal component analysis (PCA) representation, two monitoring metrics, Hotelling's T2 and the Q-statistic,: are calculated and their control limits are updated. For more efficient model updating, forgetting factors, which change with time, for the updating of the mean and covariance are considered. Furthermore, the updating scheme proposed is robust in that it not only reduces the false alarm rate in the monitoring charts but also makes the model insensitive to outliers. The adaptive MSPC approach developed is applied to a multivariate static system and a continuous stirred tank reactor process, and the results are compared to static MSPC. The revised approach is shown to be effective for the monitoring of processes where changes are either fast or slow. © 2006 American Chemical Society.

Publication metadata

Author(s): Choi SW, Martin EB, Morris AJ, Lee I-B

Publication type: Article

Publication status: Published

Journal: Industrial and Engineering Chemistry Research

Year: 2006

Volume: 45

Issue: 9

Pages: 3108-3118

ISSN (print): 0888-5885

ISSN (electronic): 1520-5045

Publisher: American Chemical Society


DOI: 10.1021/ie050391w


Altmetrics provided by Altmetric