Browse by author
Lookup NU author(s): Dr Mauro Santibanez Koref
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
O6-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O6 position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele. © 2007 Elsevier B.V. All rights reserved.
Author(s): Povey AC, Margison GP, Santibanez-Koref MF
Publication type: Article
Publication status: Published
Journal: DNA Repair
Year: 2007
Volume: 6
Issue: 8
Pages: 1134-1144
ISSN (print): 1568-7864
ISSN (electronic): 1568-7856
Publisher: Elsevier BV
URL: http://dx.doi.org/10.1016/j.dnarep.2007.03.022
DOI: 10.1016/j.dnarep.2007.03.022
Altmetrics provided by Altmetric