Browse by author
Lookup NU author(s): Dr Michele Pozzi, Mr MA Hussan Hassan, Dr Alun Harris, Emeritus Professor James Burdess, Dr Gordon Phelps, Professor Nick Wright
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Silicon carbide (SiC) is widely recognized as the leading candidate to replace silicon in micro-electro-mechanical systems devices operating in harsh environments. In this work, cantilevers and bridges in SiC are designed, fabricated and evaluated between room temperature (RT) and 600 °C. The active material is a cubic poly-SiC film deposited on a poly-Si layer which is separated from the Si substrate by a thermal oxide. From surface profiling and optical observations, it is deduced that an average residual strain of +5 × 10-4 is present in the 2.7 νm thick film, with a gradient of 2.5 × 10-4 νm-1. The structures are excited either mechanically or electrostatically. Their resonance frequency is measured by laser Doppler velocimetry and used to derive the Young's modulus and residual stress in the heteroepitaxial layer (330 45 GPa and 200 20 MPa, respectively). The temperature coefficient of Young's modulus is found to be -53 2 ppm K -1 in the range RT to ∼ 300 °C, while an analytical expression is given for the temperature dependence of the Young's modulus between RT and 500 °C. The residual tensile stress is found to depend on temperature in a complex manner. © 2007 IOP Publishing Ltd.
Author(s): Pozzi M, Hassan M, Harris AJ, Burdess JS, Jiang L, Lee KK, Cheung R, Phelps GJ, Wright NG, Zorman CA, Mehregany M
Publication type: Article
Publication status: Published
Journal: Journal of Physics D: Applied Physics
Year: 2007
Volume: 40
Issue: 11
Pages: 3335-3342
ISSN (print): 0022-3727
ISSN (electronic): 1361-6463
Publisher: Institute of Physics Publishing Ltd.
URL: http://dx.doi.org/10.1088/0022-3727/40/11/012
DOI: 10.1088/0022-3727/40/11/012
Altmetrics provided by Altmetric