Browse by author
Lookup NU author(s): Mahesh Shivhare, Christopher Jackson, Emeritus Professor Keith Scott, Professor Elaine Martin
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
A kinetic model for the anode of the direct methanol fuel cell (DMFC) is presented. The model is based on the generally accepted dual site mechanism of methanol oxidation, in aqueous solution, on well characterized Pt-Ru catalyst and it can predict the performance of the electrode as a function of cell temperature, anode potential and methanol concentration. In addition the model also generates data regarding the surface coverage of significant adsorbates involved in methanol oxidation on the dual site catalyst. The analysis of the initial complex model confirms that a simplification in anode modelling can be made and some of the kinetic parameter can be reliably neglected. Based on this approach a fast and simplified three parameter model is derived from the same complex kinetic mechanism. The kinetic parameters of both models are estimated from experimental anode polarisation data from a 9 cm2 DMFC operating with various methanol feed concentrations and temperatures. The models were developed in Lab VIEW and this has greatly simplified the simulation process, giving a model with ca. 85-95% fit on the experimental data. Depending on the computational speed available, and the desired complexity of problem at hand, either of the models can be used to give accurate model simulations for methanol fuel cell polarisations. © 2007 Elsevier B.V. All rights reserved.
Author(s): Shivhare MR, Jackson CL, Scott K, Martin EB
Publication type: Article
Publication status: Published
Journal: Journal of Power Sources
Year: 2007
Volume: 173
Issue: 1
Pages: 240-248
ISSN (print): 0378-7753
ISSN (electronic): 1873-2755
Publisher: Elsevier
URL: http://dx.doi.org/10.1016/j.jpowsour.2007.05.004
DOI: 10.1016/j.jpowsour.2007.05.004
Altmetrics provided by Altmetric