Toggle Main Menu Toggle Search

Open Access padlockePrints

Forced convective heat transfer of nanofluids

Lookup NU author(s): Mahboubeh Yeganeh, Professor Lidija Siller, Dr Yuriy Butenko


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Forced convective heat transfer is experimentally investigated using aqueous and ethylene glycol-based spherical titania nanofluids, and aqueous-based titanate nanotubes, carbon nanotubes and nano-diamond nanofluids. These nanofluids are formulated from dry nanoparticles and pure base liquids to eliminate complications due to unknown solution chemistry. All the formulated nanofluids show a higher effective thermal conductivity than that predicted by the conventional theories. Except for the ethylene glycol-based titania nanofluids, all other nanofluids are found to be non-Newtonian. For aqueous-based titania and carbon and titanate nanotube nanofluids, the convective heat transfer coefficient enhancement exceeds, by a large margin, the extent of the thermal conduction enhancement. However, deterioration of the convective heat transfer is observed for ethylene glycol-based titania nanofluids at low Reynolds numbers and aqueous-based nano-diamond nanofluids. Possible mechanisms for the observed controversy are discussed from both microscopic and macroscopic viewpoints. The competing effects of particle migration on the thermal boundary layer thickness and that on the effective thermal conductivity are suggested to be responsible for the experimental observations. © 2007 VSP.

Publication metadata

Author(s): Ding Y, Chen H, He Y, Lapkin A, Yeganeh M, Siller L, Butenko YV

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Advanced Powder Technology: JSPS Young Researchers Meeting 2006

Year of Conference: 2007

Pages: 813-824

ISSN: 0921-8831

Publisher: Elsevier


DOI: 10.1163/156855207782515021

Library holdings: Search Newcastle University Library for this item

ISBN: 15685527