Browse by author
Lookup NU author(s): Chen Wei, Dr Wai Lok Woo, Emeritus Professor Satnam Dlay
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Nonlinear signal separation and underdetermined signal separation have received much attention in blind signal separation literature. However, neither of them can solve the situation where both nonlinear and underdetermined characteristics exist at the same time. In this paper, a new learning algorithm based on Bayesian statistics is proposed to solve the separation problem of the blind nonlinear underdetermined mixtures. We suppose that the observations are post-nonlinear mixtures of the sources and the number of observations is less than the number of sources. Due to the characteristics of Bayesian statistics, the generalized Gaussian distribution model is utilized to approximate the prior probability distribution of the source signals and the mixing variables. Formal derivation shows that the source signals, mixing matrix and nonlinear functions can be estimated through an iterative technique based on alternate optimization. The nonlinear mismatch problem is also considered by applying a multilayer perceptron with a typical least square error problem. Simulations have been given to demonstrate the effectiveness in separating signals under nonlinear and underdetermined conditions. © 2006 Elsevier Inc. All rights reserved.
Author(s): Wei C, Woo WL, Dlay SS
Publication type: Article
Publication status: Published
Journal: Digital Signal Processing: A Review Journal
Year: 2007
Volume: 17
Issue: 1
Pages: 50-68
Print publication date: 01/01/2007
ISSN (print): 1051-2004
ISSN (electronic): 1095-4333
Publisher: Academic Press
URL: http://dx.doi.org/10.1016/j.dsp.2006.04.003
DOI: 10.1016/j.dsp.2006.04.003
Altmetrics provided by Altmetric