Browse by author
Lookup NU author(s): Professor Andrew Trevelyan
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Primary cortical areas normally have a single mapping of the receptor array arising from a 'point-to-point' projection from the thalamus. We show that, for the visual cortex, this simple mapping rule breaks down when retinal input to the thalamus is altered. We utilize the monocular enucleation paradigm, which alters subcortical mappings ipsilateral to the remaining eye. We show that this manipulation produces an altered visuotopic map in area 17 with two separated, mirror-imaged representations of the central visual field. Furthermore, thalamic point-to-point connectivity is dramatically changed. There are now two overlapping geniculocortical projections: the predominant projection maps with apparently normal topography, and a second projection maps with the opposite polarity. The plane of symmetry of the duplicated anatomical projection coincides precisely with the functional map reversal and, notably, geniculocortical magnification factors are identical in the two projections. We suggest that the duplicated, abnormal geniculocortical projection is retinotopically matched to the normal projection. We speculate that aberrant geniculocortical terminals are stabilized because they have coherent activity patterns with topographically normal terminals. © The Authors (2007).
Author(s): Trevelyan AJ, Upton AL, Cordery PM, Thompson ID
Publication type: Article
Publication status: Published
Journal: European Journal of Neuroscience
Year: 2007
Volume: 26
Issue: 11
Pages: 3277-3290
ISSN (print): 0953-816X
ISSN (electronic): 1460-9568
Publisher: Wiley-Blackwell Publishing Ltd.
URL: http://dx.doi.org/10.1111/j.1460-9568.2007.05941.x
DOI: 10.1111/j.1460-9568.2007.05941.x
PubMed id: 18005057
Altmetrics provided by Altmetric