Toggle Main Menu Toggle Search

Open Access padlockePrints

Application of ANN-Based Response Surface Method to Prediction of Ultimate Strength of Stiffened Panels

Lookup NU author(s): Professor Ehsan Mesbahi, Dr Yongchang Pu


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Stiffened plates are major structural components in ships and offshore structures. Their structural integrity has direct implications on the safety of human beings and goods on ships. Accurate prediction of the ultimate strength of stiffened plates has been a very important task for ship designers. In this study, an artificial neural network-based response surface method (ANN-RSM) is applied to derive a formula to predict the ultimate strength of stiffened plates under uniaxial compression using the existing experimental data. The key issues in optimizing an ANN model are systematically examined. The developed formula is compared with some existing analytical formulas, such as Faulkner's formulas, Pu's formulas, and Carlsen's formula. It is determined that the formula proposed in this study is much more accurate than existing analytical methods based on the current database. The hyperbolic tangent activation function can produce more accurate results than the sigmoid function in this application. The normalization range of input and output variables also has an effect on the performance of the ANN model, which should be considered. ANN-RSM has fairly good extrapolation capacity. © 2008 ASCE.

Publication metadata

Author(s): Mesbahi E, Pu Y

Publication type: Article

Publication status: Published

Journal: Journal of Structural Engineering

Year: 2008

Volume: 134

Issue: 10

Pages: 1649-1656

Print publication date: 01/01/2008

ISSN (print): 0733-9445

ISSN (electronic): 1943-541X

Publisher: American Society of Civil Engineers


DOI: 10.1061/(ASCE)0733-9445(2008)134:10(1649)


Altmetrics provided by Altmetric