Browse by author
Lookup NU author(s): Professor Nicholas JakubovicsORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ∼50,000 and ∼17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ∼50-kDa protein as an NAD+- and metal ion-dependent phospho-α-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-α-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ∼1.5- and ∼1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon.
Author(s): Thompson J, Jakubovics N, Abraham B, Hess S, Pikis A
Publication type: Article
Publication status: Published
Journal: Journal of Bacteriology
Year: 2008
Volume: 190
Issue: 9
Pages: 3362-3373
ISSN (print): 0021-9193
ISSN (electronic): 1098-5530
Publisher: American Society for Microbiology
URL: http://dx.doi.org/10.1128/JB.02008-07
DOI: 10.1128/JB.02008-07
PubMed id: 18310337
Altmetrics provided by Altmetric