Browse by author
Lookup NU author(s): Professor Wen-Feng Lin, Jia Jin, Professor Paul ChristensenORCiD, Fuyun Zhu
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The work presented in this article shows the power of the variable temperature, in-situ FT-IR spectroscopy system developed in Newcastle with respect to the investigation of fuel cell electro-catalysis. On the Ru(0001) electrode surface, CO co-adsorbs with the oxygen-containing adlayers to form mixed [CO + (2 × 2)-O(H)] domains. The electro-oxidation of the Ru(0001) surface leads to the formation of active (1 × 1)-O(H) domains, and the oxidation of adsorbed CO then takes place at the perimeter of these domains. At 20°C, the adsorbed CO is present as rather compact islands. In contrast, at 60°C, the COads is present as a relatively looser and weaker adlayer. Higher temperature was also found to facilitate the surface diffusion and oxidation of COads. No dissociation or electro-oxidation of methanol was observed at potentials below approximately 950 mV; however, the Ru(0001) surface at high anodic potentials was observed to be very active. On both Pt and PtRu nanoparticle surfaces, only one linear bond CO adsorbate was formed from methanol adsorption, and the PtRu surface significantly promoted both methanol dissociative adsorption to CO and its further oxidation to CO2. Increasing temperature from 20° to 60°C significantly facilitates the methanol turnover to CO2.
Author(s): Lin WF, Jin JM, Christensen PA, Zhu F, Shao ZG
Publication type: Article
Publication status: Published
Journal: Chemical Engineering Communications
Year: 2008
Volume: 195
Issue: 2
Pages: 147-166
Print publication date: 01/02/2008
ISSN (print): 0098-6445
ISSN (electronic): 1026-7379
Publisher: Taylor & Francis Inc.
URL: http://dx.doi.org/10.1080/00986440701569242
DOI: 10.1080/00986440701569242
Altmetrics provided by Altmetric