Browse by author
Lookup NU author(s): Dr Stephanie Colvan, Professor Keith Syers, Professor Anthony O'Donnell
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Soil phosphatase activities play an important role in the mineralisation of soil phosphorus (P). In this study acid and alkaline phosphomonoesterase and phosphodiesterase activities of soils under long-term fertiliser management (ca. 100 years) were measured to determine the effects of fertiliser inputs on the cycling and availability of P. Enzyme activities were compared with microbial biomass P, determined by fumigation-extraction, and with extractable P using NH4F-HCl. Experimental plots were divided into three groups: those receiving farm-yard manure (FYM), those receiving mineral P and those receiving no P amendment. Plots receiving FYM had the highest extractable P values and the greatest enzyme activities. There was no obvious relationship between extractable P and microbial biomass P except in those plots where no P was added (r(2)=0.778), emphasising the importance of fertiliser management in P dynamics in soils. Acid phosphomonoesterase activity was high in all plots, including those where microbial biomass P levels were low. This supports the findings of previous studies suggesting that acid phosphomonoesterase activity in soils is primarily of root origin. All phosphatase enzyme activities were significantly correlated with extractable P in plots receiving mineral P. This relationship was negative for acid phosphomonoesterase activity (r(2)=-0.947), suggesting that acid phosphomonoesterase activity is suppressed by extractable P in managed grasslands receiving mineral P fertilisers.
Author(s): Syers JK; Colvan SR; O'Donnell AG
Publication type: Article
Publication status: Published
Journal: Biology and Fertility of Soils
Year: 2001
Volume: 34
Issue: 4
Pages: 258-263
ISSN (print): 0178-2762
ISSN (electronic): 1432-0789
Publisher: Springer
URL: http://dx.doi.org/10.1007/s003740100411
DOI: 10.1007/s003740100411
Altmetrics provided by Altmetric