Browse by author
Lookup NU author(s): Professor Axel Brandenburg
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large-scale travelling wave pattern. The resulting field structure possesses magnetic helicity, which is conserved in a periodic box by the ideal magnetohydrodynamics equations and can hence only change on a resistive time-scale. This strongly constrains the growth time of the large-scale magnetic field, but less strongly constrains the length of the cycle period. Comparing this with the case without shear, the time-scale for large-scale field amplification is shortened by a factor Q, which depends on the relative importance of shear and helical turbulence, and which also controls the ratio of toroidal to poloidal field. The results of the simulations can be reproduced qualitatively and quantitatively with a mean-field alpha Omega -dynamo model with alpha-effect and turbulent magnetic diffusivity coefficients that are less strongly quenched than in the corresponding a alpha (2)-dynamo.
Author(s): Brandenburg A, Bigazzi A, Subramanian K
Publication type: Article
Publication status: Published
Journal: Monthly Notices of the Royal Astronomical Society
Year: 2001
Volume: 325
Issue: 2
Pages: 685-692
ISSN (print): 0035-8711
ISSN (electronic): 1365-2966
Publisher: Wiley-Blackwell Publishing Ltd.
URL: http://dx.doi.org/10.1046/j.1365-8711.2001.04468.x
DOI: 10.1046/j.1365-8711.2001.04468.x
Altmetrics provided by Altmetric