Toggle Main Menu Toggle Search

Open Access padlockePrints

Magnetic helicity in stellar dynamos: new numerical experiments

Lookup NU author(s): Professor Axel Brandenburg, Dr Wolfgang Dobler


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear. cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super-equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle. accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry. we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of alpha. For solar parameters. typical magnetic helicity fluxes lie around 10(47) Mx(2) per cycle.

Publication metadata

Author(s): Brandenburg A, Dobler W, Subramanian K

Publication type: Article

Publication status: Published

Journal: Astronomische Nachrichten

Year: 2002

Volume: 323

Issue: 2

Pages: 99-122

Print publication date: 01/01/2002

ISSN (print): 0004-6337

ISSN (electronic): 1521-3994

Publisher: Wiley - V C H Verlag GmbH & Co. KGaA


DOI: 10.1002/1521-3994(200207)323:2<99::AID-ASNA99>3.0.CO;2-B


Altmetrics provided by Altmetric