Browse by author
Lookup NU author(s): Dr Christina Nielsen-Marsh, Dr Matthew Collins
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1-19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp, in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.
Author(s): Nielsen-Marsh CM, Ostrom PH, Gandhi H, Shapiro B, Cooper A, Hauschka PV, Collins MJ
Publication type: Article
Publication status: Published
Journal: Geology
Year: 2002
Volume: 30
Issue: 12
Pages: 1099-1102
ISSN (print): 0091-7613
ISSN (electronic): 1943-2682
Publisher: Geological Society of America
URL: http://dx.doi.org/10.1130/0091-7613(2002)030<1099:SPOOPA>2.0.CO;2
DOI: 10.1130/0091-7613(2002)030<1099:SPOOPA>2.0.CO;2
Altmetrics provided by Altmetric