Browse by author
Lookup NU author(s): Professor Patrick Briddon
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Crystalline silicon samples doped with carbon were irradiated with electrons and subsequently implanted with protons. infrared-absorption measurements revealed local modes of hydrogen and carbon at 2967.4, 911.7, and 654.7 cm(-1), which originate from the same defect. Measurements on samples codoped with different carbon and hydrogen isotopes showed that the defect contains two equivalent carbon and two equivalent hydrogen atoms. From uniaxial stress measurements, the defect is found to display trigonal symmetry. Ab initio local-density-functional theory was applied to calculate the structure and local vibrational modes of defects with pairs of equivalent carbon and hydrogen atoms. Based on these results, the observed local modes are ascribed to a defect with two adjacent substitutional carbon atoms, each of which binds a hydrogen atom located between the carbon atoms.
Author(s): Briddon PR; Lavrov EV; Nielsen BB; Hourahine B; Jones R; Oberg S
Publication type: Article
Publication status: Published
Journal: Physical Review B: Condensed Matter and Materials Physics
Year: 2000
Volume: 62
Issue: 19
Pages: 12859-12867
ISSN (print): 1098-0121
ISSN (electronic): 1550-235X
Publisher: American Physical Society
URL: http://dx.doi.org/10.1103/PhysRevB.62.12859
DOI: 10.1103/PhysRevB.62.12859
Altmetrics provided by Altmetric