Toggle Main Menu Toggle Search

Open Access padlockePrints

Spatiotemporal patterns of electrocorticographic very fast oscillations (> 80 Hz) consistent with a network model based on electrical coupling between principal neurons

Lookup NU author(s): Professor Mark Cunningham, Professor Miles Whittington

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

P>Purpose: We sought to characterize spatial and temporal patterns of electrocorticography (ECoG) very fast oscillations (> similar to 80 Hz, VFOs) prior to seizures in human frontotemporal neocortex, and to develop a testable network model of these patterns. Methods: ECoG data were recorded with subdural grids from two preoperative patients with seizures of frontal lobe onset in an epilepsy monitoring unit. VFOs were recorded from rat neocortical slices. A "cellular automaton" model of network oscillations was developed, extending ideas of Traub et al. (Neuroscience, 92, 1999, 407) and Lewis & Rinzel (Network: Comput Neural Syst, 11, 2000, 299); this model is based on postulated electrical coupling between pyramidal cell axons. Results: Layer 5 of rat neocortex, in vitro, can generate VFOs when chemical synapses are blocked. Human epileptic neocortex, in situ, produces preseizure VFOs characterized by the sudden appearance of "blobs" of activity that evolve into spreading wavefronts. When wavefronts meet, they coalesce and propagate perpendicularly but never pass through each other. This type of pattern has been described by Lewis & Rinzel in cellular automaton models with spatially localized connectivity, and is demonstrated here with 120,000- to 5,760,000-cell models. We provide a formula for estimating VFO period from structural parameters and estimate the spatial scale of the connectivity. Discussion: These data provide further evidence, albeit indirect, that preseizure VFOs are generated by networks of pyramidal neurons coupled by gap junctions, each predominantly confined to pairs of neurons having somata separated by < similar to 1-2 mm. Plausible antiepileptic targets are tissue mechanisms, such as pH regulation, that influence gap-junction conductance.


Publication metadata

Author(s): Traub RD, Duncan R, Russell AJC, Baldeweg T, Tu YH, Cunningham MO, Whittington MA

Publication type: Article

Publication status: Published

Journal: Epilepsia

Year: 2010

Volume: 51

Issue: 8

Pages: 1587-1597

Print publication date: 01/08/2010

ISSN (print): 0013-9580

ISSN (electronic): 1528-1167

Publisher: Wiley-Blackwell

URL: http://dx.doi.org/10.1111/j.1528-1167.2009.02420.x

DOI: 10.1111/j.1528-1167.2009.02420.x


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
IBM Corp.
MRC Milstein Fund (United Kingdom)
Royal Society
Wolfson Foundation
Alexander von Humboldt Stiftung
Newcastle upon Tyne Healthcare Charities Trust
R01NS044133NIH/NINDS

Share