Browse by author
Lookup NU author(s): Andrew Dodd, Catherine Syddall, Professor John LoughlinORCiD
Osteoarthritis (OA) is a polygenic disease characterized by cartilage loss, with the single-nucleotide polymorphism (SNP) rs143383 (C/T) influencing OA susceptibility across a range of ethnic groups. The SNP resides within the 5′-UTR of the growth and differentiation factor 5 gene (GDF5), with the OA-associated T-allele mediating reduced GDF5 expression. As GDF5 codes for a cartilage anabolic protein, this reduced expression may explain why the T-allele of rs143383 is an OA risk factor. Our deep sequencing of GDF5 identified a C/A transversion located −41 bp relative to the gene’s transcription start site. This promoter variant is predicted to affect transcription factor binding and it may therefore highlight a regulatory site that could be exploited to manipulate GDF5 expression and alleviate the detrimental effect mediated by the T-allele of rs143383. Here, we describe our functional assessment of the −41 bp variant. Using reporter constructs we demonstrated that the transversion leads to increased gene expression to such a degree that the A-allele is able to compensate for the reduced expression mediated by the T-allele of rs143383. Using electrophoretic mobility shift assays we identified YY1 as a trans-acting factor that differentially binds to the alleles of the −41 bp variant, with more avid binding to allele A. Knockdown of YY1 led to a significant reduction in GDF5 expression, supporting YY1 as a GDF5 activator. In conclusion, we demonstrated that the −41 bp variant is functional and we have identified a regulatory region of GDF5 that can be exploited to overcome the OA genetic deficit mediated by the T-allele of rs143383.
Author(s): Dodd AW, Syddall CM, Loughlin J
Publication type: Article
Publication status: Published
Journal: European Journal of Human Genetics
Year: 2013
Volume: 21
Issue: 5
Pages: 517-521
Print publication date: 29/08/2012
Date deposited: 02/05/2013
ISSN (print): 1018-4813
ISSN (electronic): 1476-5438
Publisher: Nature Publishing Group
URL: http://dx.doi.org/10.1038/ejhg.2012.197
DOI: 10.1038/ejhg.2012.197
Altmetrics provided by Altmetric