Browse by author
Lookup NU author(s): Dr Susana Silva Martinez, Professor Sudipta Roy
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Tin stripping is employed widely for the manufacture of printed circuit boards. At the end of stripping process, in general, 2-40 g/l of Cu, along with 150 g/l SnO2 and ferric and nitrate ions remain in solution. In earlier work, we have shown the thermodynamic [R. Buckle, S. Roy, Sep. Purif. Technol. 62 (2008) 86-96] and kinetic [S. Roy, R. Buckle, Sep. Purif. Technol. 68 (2009) 185-192] considerations for copper and tin recovery from spent tin stripping solutions. In this work we have examined the performance of an electrochemical batch recycle reactor for copper reclamation by galvanostatic plating. Galvanostatic control was achieved by the application of decreasing constant current steps which followed the concentration decay of metal ions in solution. The concentration decay was predicted by a model based on the batch recycle reactor operating under mass transport control. The current required to reduce the copper ions at the mass transfer limit at each time step was predicted from the model. These were matched against copper reclamation experiments from simulated tin tripping waste solutions using a single volumetric mass transfer coefficient as a fitting parameter. The prediction of the concentration decay of copper ions was in good agreement with the experimental data. It was found that the current efficiency for copper deposition was lowered by nitrates and oxygen present in the electrolyte due to their co-reduction at the cathode. Dissolved Fe2+ ions also influenced current efficiency for copper recovery due to the simultaneous reduction of ferric ions. The current efficiency was between 70% and 90% throughout the electrolytic process, which suggests that electrochemical copper reclamation may be a viable process.
Author(s): Silva-Martinez S, Roy S
Publication type: Article
Publication status: Published
Journal: Separation and Purification Technology
Year: 2013
Volume: 118
Pages: 6-12
Print publication date: 03/07/2013
ISSN (print): 1383-5866
ISSN (electronic): 1873-3794
Publisher: Elsevier
URL: http://dx.doi.org/10.1016/j.seppur.2013.06.030
DOI: 10.1016/j.seppur.2013.06.030
Altmetrics provided by Altmetric