Browse by author
Lookup NU author(s): Maxim Rykunov, Dr Andrey Mokhov, Dr Danil Sokolov, Professor Alex Yakovlev
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
In the last decade we have witnessed a steady trend towards functional diversification of hardware, because an application specific hardware component is a lot easier to design and optimise than a general-purpose one. Therefore, a modern microelectronics system often contains several application specific cores, each targeted for a particular function. As operating conditions issues are becoming more important, we start to see non-functional diversification in terms of performance and energy consumption; it is expected that a system can operate in a wide spectrum of environmental conditions and it should support a hierarchy of energy-saving modes. As a result, "mode-specific" processing cores are gaining popularity. The number of possible combinations of functional and nonfunctional variations of hardware components is becoming unmanageable and is leading to inefficient silicon utilisation. In this paper we explore a novel approach to hardware design which allows building computation systems capable of adjusting to operating conditions through dynamic reconfiguration. We demonstrate the approach by designing an asynchronous microprocessor core that can operate in a wide range of supply voltages and can adjust its functionality towards a specific application and operating mode. Our methodology is based on a novel model of hardware description and on self-timed design techniques.
Author(s): Rykunov M, Mokhov A, Sokolov D, Yakovlev A, Koelmans A
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: 24th International Conference on Application-Specific Systems, Architectures and Processors (ASAP 2013)
Year of Conference: 2013
Pages: 314-320
Online publication date: 25/07/2013
ISSN: 2160-0511
Publisher: IEEE
URL: http://dx.doi.org/10.1109/ASAP.2013.6567596
DOI: 10.1109/ASAP.2013.6567596
Library holdings: Search Newcastle University Library for this item
ISBN: 9781479904945