Browse by author
Lookup NU author(s): Juliana Haggerty, Dr Xiao WangORCiD, Professor Anne Dickinson, Dr Chris O'MalleyORCiD, Professor Elaine Martin
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
~BackgroundDigital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.MethodsA new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.ResultsExperimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.ConclusionsEpidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues.
Author(s): Haggerty JM, Wang XN, Dickinson A, O'Malley CJ, Martin EB
Publication type: Article
Publication status: Published
Journal: BMC Medical Imaging
Year: 2014
Volume: 14
Print publication date: 12/02/2014
Online publication date: 12/02/2014
Acceptance date: 03/02/2014
Date deposited: 17/04/2014
ISSN (electronic): 1471-2342
Publisher: BioMed Central Ltd
URL: http://dx.doi.org/10.1186/1471-2342-14-7
DOI: 10.1186/1471-2342-14-7
Altmetrics provided by Altmetric