Browse by author
Lookup NU author(s): Professor Bob Anderson
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Background-Heterozygous human mutations of NKX2-5 are highly penetrant and associated with varied congenital heart defects. The heterozygous knockout of murine Nkx2-5, in contrast, manifests less profound cardiac malformations, with low disease penetrance. We sought to study this apparent discrepancy between human and mouse genetics. Because missense mutations in the NKX2-5 homeodomain (DNA-binding domain) are the most frequently reported type of human mutation, we replicated this genetic defect in a murine knockin model.Methods and Results-We generated a murine model in a 129/Sv genetic background by knocking-in an Nkx2-5 homeodomain missense mutation previously identified in humans. The mutation was located at homeodomain position 52Arg -> Gly (R52G). All the heterozygous neonatal Nkx2-5(+/R52G) mice demonstrated a prominent trabecular layer in the ventricular wall, so called noncompaction, along with diverse cardiac anomalies, including atrioventricular septal defects, Ebstein malformation of the tricuspid valve, and perimembranous and muscular ventricular septal defects. In addition, P10 Nkx2-5(+/R52G) mice demonstrated atrial sepal anomalies, with significant increase in the size of the interatrial communication and fossa ovalis, and decrease in the length of the flap valve compared with control Nkx2-5(+/+) or Nkx2-5(+/-) mice.Conclusions-The results of our study demonstrate that heterozygous missense mutation in the murine Nkx2-5 homeodomain (R52G) is highly penetrant and result in pleiotropic cardiac effects. Thus, in contrast to heterozygous Nkx2-5 knockout mice, the effects of the heterozygous knockin mimic findings in humans with heterozygous missense mutation in NKX2-5 homeodomain.
Author(s): Ashraf H, Pradhan L, Chang EI, Terada R, Ryan NJ, Briggs LE, Chowdhury R, Zarate MA, Sugi Y, Nam HJ, Benson DW, Anderson RH, Kasahara H
Publication type: Article
Publication status: Published
Journal: Circulation: Cardiovascular Genetics
Year: 2014
Volume: 7
Issue: 4
Pages: 423-433
Print publication date: 01/08/2014
Online publication date: 15/07/2014
Acceptance date: 29/05/2014
ISSN (print): 1942-325X
ISSN (electronic): 1942-3268
Publisher: Lippincott Williams & Wilkins
URL: http://dx.doi.org/10.1161/CIRCGENETICS.113.000281
DOI: 10.1161/CIRCGENETICS.113.000281
Altmetrics provided by Altmetric