Browse by author
Lookup NU author(s): Dr Birthe HilgenORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
In the brain, including the retina, interneurons show an enormous structural and functional diversity. Retinal horizontal cells represent a class of interneurons that form triad synapses with photoreceptors and ON bipolar cells. At this first retinal synapse, horizontal cells modulate signal transmission from photoreceptors to bipolar cells by feedback and feedforward inhibition. To test how the fully developed retina reacts to the specific loss of horizontal cells, these interneurons were specifically ablated from adult mice using the diphtheria toxin (DT)/DT-receptor system and the connexin57 promoter. Following ablation, the retinal network responded with extensive remodeling: rods retracted their axons from the outer plexiform layer and partially degenerated, whereas cones survived. Cone pedicles remained in the outer plexiform layer and preserved synaptic contacts with OFF but not with ON bipolar cells. Consistently, the retinal ON pathway was impaired, leading to reduced amplitudes and prolonged latencies in electroretinograms. However, ganglion cell responses showed only slight changes in time course, presumably because ON bipolar cells formed multiple ectopic synapses with photoreceptors, and visual performance, assessed with an optomotor system, was only mildly affected. Thus, the loss of an entire interneuron class can be largely compensated even by the adult retinal network.
Author(s): Sonntag S, Dedek K, Dorgau B, Schultz K, Schmidt KF, Cimiotti K, Weiler R, Löwel S, Willecke K, Janssen-Bienhold U
Publication type: Article
Publication status: Published
Journal: Journal of Neuroscience
Year: 2012
Volume: 32
Issue: 31
Pages: 10713-10724
Online publication date: 01/08/2012
Acceptance date: 12/06/2012
ISSN (print): 0270-6474
ISSN (electronic): 1529-2401
Publisher: Society for Neuroscience
URL: http://dx.doi.org/10.1523/JNEUROSCI.0442-12.2012
DOI: 10.1523/JNEUROSCI.0442-12.2012
Altmetrics provided by Altmetric