Toggle Main Menu Toggle Search

Open Access padlockePrints

Non-destructive Evaluation of Early Contact Fatigue Using Eddy Current Pulsed Thermography

Lookup NU author(s): Professor Gui Yun TianORCiD, Dr Bin Gao, Dr Jishan Zhang, Professor Brian Shaw, Dr Aijun Yin



This is the authors' accepted manuscript of an article that has been published in its final definitive form by IEEE, 2015.

For re-use rights please refer to the publisher's terms and conditions.


Cyclic loading 1 can lead to fatigue damage on the surface or subsurface of a gear tooth. In order to evaluate the contact fatigue damage, this paper applies eddy current pulsed thermography (ECPT) for fatigue damage characterization a different intervals of the loading cycle. The challenging task of fatigue evaluation is one of solving the qualitative microstructure state characterization before microcrack initiation. This paper proposes the thermos-optical flow entropy tracking method to trace the heat flow and characterize the degree of fatigue damage while in this status no macro-defects appears using ECPT. In addition, the thermooptical flow is mathematically modelled to yield several desirable unique properties to evaluate minor variations in the microstructure of the material during the fatigue process. The nondestructive evaluation of fatigue damage with ECPT thermooptical flow is derived. The relationship between the entropy of thermooptical flow and the degree of contact fatigue at an early stage is established. The experimental study validates that the proposed method can detect and characterize the implicit damage and that the entropy of thermooptical flow is highly correlated with fatigue cycles which has the potential to evaluate the degree of fatigue damage.

Publication metadata

Author(s): Liu J, Ren W, Tian GY, Gao B, Wang YZ, Zhang J, Shaw B, Yin A, King-Alale NO

Publication type: Article

Publication status: Published

Journal: IEEE Sensors Journal

Year: 2015

Volume: 15

Issue: 8

Pages: 4409-4419

Print publication date: 01/08/2015

Online publication date: 24/03/2015

Acceptance date: 12/03/2015

Date deposited: 06/05/2015

ISSN (print): 1530-437X

ISSN (electronic): 1558-1748

Publisher: IEEE


DOI: 10.1109/JSEN.2015.2416394


Altmetrics provided by Altmetric


Funder referenceFunder name
Seventh Framework Program through the Health Monitoring of Offshore Wind Farms Project
136413China Post Doctoral Program
2013HH0059Sichuan Science and Technology Department
61401071National Natural Science Foundation of China
51377015National Natural Science Foundation of China
U1430115National Scholastic Athletics Foundation