Browse by author
Lookup NU author(s): Professor Hermano Krebs
This is the final published version of an article that has been published in its final definitive form by IEEE, 2016.
For re-use rights please refer to the publisher's terms and conditions.
© 2013 IEEE.The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the 'push off' region of stance phase, as well as measurement of these properties in the coronal plane.
Author(s): Lee H, Rouse EJ, Krebs HI
Publication type: Article
Publication status: Published
Journal: IEEE Journal of Translational Engineering in Health and Medicine
Year: 2016
Volume: 4
Online publication date: 19/08/2016
Acceptance date: 02/08/2016
Date deposited: 07/04/2017
ISSN (print): 2168-2372
Publisher: IEEE
URL: http://doi.org/10.1109/JTEHM.2016.2601613
DOI: 10.1109/JTEHM.2016.2601613
Altmetrics provided by Altmetric