Toggle Main Menu Toggle Search

Open Access padlockePrints

Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line

Lookup NU author(s): Professor John Hesketh

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Copyright © The Authors 2017 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA–mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.


Publication metadata

Author(s): McCann MJ, Rotjanapun K, Hesketh JE, Roy NC

Publication type: Article

Publication status: Published

Journal: British Journal of Nutrition

Year: 2017

Volume: 117

Issue: 9

Pages: 1212-1221

Print publication date: 01/05/2017

Online publication date: 02/06/2017

Acceptance date: 11/04/2017

Date deposited: 28/06/2017

ISSN (print): 0007-1145

ISSN (electronic): 1475-2662

Publisher: Cambridge University Press

URL: https://doi.org/10.1017/S0007114517001143

DOI: 10.1017/S0007114517001143


Altmetrics

Altmetrics provided by Altmetric


Share