Toggle Main Menu Toggle Search

Open Access padlockePrints

In vivo quantification of glial activation in minipigs overexpressing human α-synuclein

Lookup NU author(s): Professor David BrooksORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


© 2018 Wiley Periodicals, Inc Parkinson’s disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson’s disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11C](R)PK11195, to image brain microglial activation and (+)-α-[11C]dihydrotetrabenazine ([11C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.

Publication metadata

Author(s): Lillethorup TP, Glud AN, Landeck N, Alstrup AKO, Jakobsen S, Vang K, Doudet DJ, Brooks DJ, Kirik D, Hinz R, Sorensen JC, Landau AM

Publication type: Article

Publication status: Published

Journal: Synapse

Year: 2018

Volume: 72

Issue: 12

Print publication date: 01/12/2018

Online publication date: 15/07/2018

Acceptance date: 11/07/2018

ISSN (print): 0887-4476

ISSN (electronic): 1098-2396

Publisher: John Wiley and Sons Inc.


DOI: 10.1002/syn.22060


Altmetrics provided by Altmetric