Browse by author
Lookup NU author(s): Yaohui Gai, Dr James Widmer, Dr Andrew Steven, Mohammad Kimiabeigi
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 1982-2012 IEEE.The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.
Author(s): Gai Y, Widmer JD, Steven A, Chong YC, Kimiabeigi M, Goss J, Popescu M
Publication type: Article
Publication status: Published
Journal: IEEE Transactions on Industrial Electronics
Year: 2019
Volume: 67
Issue: 6
Pages: 4371-4380
Online publication date: 21/06/2019
Acceptance date: 30/05/2019
ISSN (print): 0278-0046
ISSN (electronic): 1557-9948
Publisher: Institute of Electrical and Electronics Engineers Inc.
URL: https://doi.org/10.1109/TIE.2019.2922938
DOI: 10.1109/TIE.2019.2922938
Altmetrics provided by Altmetric