Toggle Main Menu Toggle Search

Open Access padlockePrints

Modulated Model Predictive Control for Induction Motor Drives with Sequential Cost Function Evaluation

Lookup NU author(s): Dr Shafiq OdhanoORCiD

Downloads


Licence

This is the authors' accepted manuscript of a conference proceedings (inc. abstract) that has been published in its final definitive form by IEEE, 2019.

For re-use rights please refer to the publisher's terms and conditions.


Abstract

© 2019 IEEE. Sequential model predictive control is a recent innovation in the high-performance control of electric drives. The elimination of weighting factors and associated tuning work is among the biggest advantages of this MPC implementation. The cost function evaluation takes place in two steps with each step narrowing down the choice of optimal voltage vector to be applied at the next switching instant. Like the conventional finite control states MPC, the sequential MPC also has a disadvantage of variable switching frequency. In this paper, this problem is addressed by considering the sequential MPC implementation with a modulator. After two-step cost function evaluation, the optimal and second optimal voltage vectors' duty cycles are computed based on the slope of the controlled variables. This preserves the optimality of the solution while, at the same time, guaranteeing constant switching frequency and reduced current and torque ripples in the drive response.


Publication metadata

Author(s): Vodola V, Odhano S, Garcia C, Norambuena M, Vaschetto S, Zanchetta P, Rodriguez J, Bojoi R

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: IEEE Energy Conversion Congress and Exposition (ECCE 2019)

Year of Conference: 2019

Pages: 4911-4917

Online publication date: 28/11/2019

Acceptance date: 02/04/2018

Date deposited: 30/03/2020

ISSN: 2329-3748

Publisher: IEEE

URL: https://doi.org/10.1109/ECCE.2019.8911870

DOI: 10.1109/ECCE.2019.8911870

Library holdings: Search Newcastle University Library for this item

ISBN: 9781728103952


Share