Browse by author
Lookup NU author(s): Professor David Lydall
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Telomeres stabilise DNA at the ends of chromosomes, preventing chromosome fusion and genetic instability. Telomeres differ from double strand breaks in that they activate neither DNA repair nor DNA damage checkpoint pathways. Paradoxically DNA repair and checkpoint genes play critical roles in telomere stability. Recent work has provided insights into the roles of DNA repair and DNA damage checkpoint pathways in the physiological maintenance of telomeres and in cellular responses when telomeres become uncapped. In budding yeast the Mre11p nuclease, along with other unidentified nucleases, plays critical roles in physiological telomere maintenance. However, when telomeres are uncapped, the 5'-to-3' exonuclease, Exo1p, plays a critical role in generating single-stranded DNA and activating checkpoint pathways. Intriguingly Exo1p does not play an important role in normal telomere maintenance. Although checkpoint pathways are not normally activated by telomeres, at least four different types of telomere defect activate checkpoint pathways. Interestingly, each of these telomere defects depends on a different subset of checkpoint proteins to induce cell cycle arrest. A model for how a spectrum of telomeric states might interact with telomerase and checkpoint pathways is proposed.
Author(s): Lydall D
Publication type: Article
Publication status: Published
Journal: Journal of Cell Science
Year: 2003
Volume: 116
Issue: 20
Pages: 4057-4065
ISSN (print): 0021-9533
ISSN (electronic): 1477-9137
Publisher: The Company of Biologists Ltd.
URL: http://dx.doi.org/10.1242/jcs.00765
DOI: 10.1242/jcs.00765
Notes: 0021-9533 Journal Article
Altmetrics provided by Altmetric