Toggle Main Menu Toggle Search

Open Access padlockePrints

Localised climate change defines ant communities in human-modified tropical landscapes

Lookup NU author(s): Professor Marion PfeiferORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).


Abstract

© 2020 British Ecological Society. Logging and habitat conversion create hotter microclimates in tropical forest landscapes, representing a powerful form of localised anthropogenic climate change. It is widely believed that these emergent conditions are responsible for driving changes in communities of organisms found in modified tropical forests, although the empirical evidence base for this is lacking. Here we investigated how interactions between the physiological traits of genera and the environmental temperatures they experience lead to functional and compositional changes in communities of ants, a key organism in tropical forest ecosystems. We found that the abundance and activity of ant genera along a gradient of forest disturbance in Sabah, Malaysian Borneo, was defined by an interaction between their thermal tolerance (CTmax) and environmental temperature. In more disturbed, warmer habitats, genera with high CTmax had increased relative abundance and functional activity, and those with low CTmax had decreased relative abundance and functional activity. This interaction determined abundance changes between primary and logged forest that differed in daily maximum temperature by a modest 1.1°C, and strengthened as the change in microclimate increased with disturbance. Between habitats that differed by 5.6°C (primary forest to oil palm) and 4.5°C (logged forest to oil palm), a 1°C difference in CTmax among genera led to a 23% and 16% change in relative abundance, and a 22% and 17% difference in functional activity. CTmax was negatively correlated with body size and trophic position, with ants becoming significantly smaller and less predatory as microclimate temperatures increased. Our results provide evidence to support the widely held, but never directly tested, assumption that physiological tolerances underpin the influence of disturbance-induced microclimate change on the abundance and function of invertebrates in tropical landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.


Publication metadata

Author(s): Boyle MJW, Bishop TR, Luke SH, van Breugel M, Evans TA, Pfeifer M, Fayle TM, Hardwick SR, Lane-Shaw RI, Yusah KM, Ashford ICR, Ashford OS, Garnett E, Turner EC, Wilkinson CL, Chung AYC, Ewers RM

Publication type: Article

Publication status: Published

Journal: Functional Ecology

Year: 2021

Volume: 35

Issue: 5

Pages: 1094-1108

Print publication date: 01/05/2021

Online publication date: 07/12/2020

Acceptance date: 04/11/2020

Date deposited: 25/02/2021

ISSN (print): 0269-8463

ISSN (electronic): 1365-2435

Publisher: Wiley-Blackwell Publishing Ltd

URL: https://doi.org/10.1111/1365-2435.13737

DOI: 10.1111/1365-2435.13737


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
Czech Science Foundation
Imperial College London. Grant Number: 14620S
Sime Darby Foundation
Sir Philip Reckitt Educational Trust
UK Natural Environment Research Council. Grant Number: NE/K016377/1
University of East Anglia. Grant Number: 19‐

Share