Toggle Main Menu Toggle Search

Open Access padlockePrints

Cellular Prion Protein Mediates α-Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo

Lookup NU author(s): Professor Tiago OuteiroORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

© 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder SocietyBackground: The cellular prion protein (PrPC) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. Objectives: We define PrPC's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. Methods: We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC-(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. Results: Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC-expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC-overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. Conclusion: PrPC's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Publication metadata

Author(s): Thom T, Schmitz M, Fischer A-L, Correia A, Correia S, Llorens F, Pique A-V, Mobius W, Domingues R, Zafar S, Stoops E, Silva CJ, Fischer A, Outeiro TF, Zerr I

Publication type: Article

Publication status: Published

Journal: Movement Disorders

Year: 2022

Volume: 37

Issue: 1

Pages: 39-51

Print publication date: 18/01/2022

Online publication date: 27/08/2021

Acceptance date: 04/08/2021

Date deposited: 09/09/2021

ISSN (print): 0885-3185

ISSN (electronic): 1531-8257

Publisher: John Wiley and Sons Inc

URL: https://doi.org/10.1002/mds.28774

DOI: 10.1002/mds.28774


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
ADDF. Grant Number: 201810-2017419
Fondo de Investigación Sanitaria. Grant Number: FIS PI14/00757

Share