Toggle Main Menu Toggle Search

Open Access padlockePrints

d-Serine induces distinct transcriptomes in diverse Escherichia coli pathotypes

Lookup NU author(s): Dr James ConnollyORCiD

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes - enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) - to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA - a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


Publication metadata

Author(s): Connolly JPR, Turner NCA, Hallam JC, Rimbi PT, Flett T, McCormack MJ, Roe AJ, O'Boyle N

Publication type: Article

Publication status: Published

Journal: Microbiology

Year: 2021

Volume: 167

Issue: 10

Online publication date: 08/10/2021

Acceptance date: 15/08/2021

ISSN (print): 1350-0872

ISSN (electronic): 1465-2080

Publisher: Microbiology Society

URL: https://doi.org/10.1099/mic.0.001093

DOI: 10.1099/mic.0.001093

PubMed id: 34623236


Altmetrics

Altmetrics provided by Altmetric


Share