Browse by author
Lookup NU author(s): Tess Capper, Dr Mario Siervo, Dr Tom Clifford, Dr Guy Taylor, Dr Wasim Iqbal, Dr Daniel WestORCiD, Professor Emma Stevenson
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. BACKGROUND: Dietary nitrate consumption can increase concentrations of nitrate and nitrite in blood, saliva, and urine. Whether the change in concentrations is influenced by age is currently unknown. OBJECTIVES: We aimed to measure changes in nitrate and nitrite concentrations in plasma, urine, and saliva and exhaled NO concentrations after single incremental doses of dietary nitrate in young and older healthy adults. METHODS: Twelve young (18-35 y old) and 12 older (60-75 y old) healthy, nonsmoking participants consumed single doses of 100 g, 200 g, 300 g whole beetroot (BR) and 1000 mg potassium nitrate (positive control) ≥7 d apart in a crossover, randomized clinical trial. Plasma nitrate and nitrite concentrations and exhaled NO concentrations were measured over a 5-h period. Salivary nitrate and nitrite concentrations were measured over a 12-h period and urinary nitrate over a 24-h period. Time, intervention, age, and interaction effects were measured with repeated-measures ANOVAs. RESULTS: Dose-dependent increases were seen in plasma, salivary, and urinary nitrate after BR ingestion (all P ≤ 0.002) but there were no differences between age groups at baseline (all P ≥ 0.56) or postintervention (all P ≥ 0.12). Plasma nitrite concentrations were higher in young than older participants at baseline (P = 0.04) and after consumption of 200 g (P = 0.04; +25.7 nmol/L; 95% CI: 0.97, 50.3 nmol/L) and 300 g BR (P = 0.02; +50.3 nmol/L; 95% CI: 8.57, 92.1 nmol/L). Baseline fractional exhaled NO (FeNO) concentrations were higher in the younger group [P = 0.03; +8.60 parts per billion (ppb); 95% CI: 0.80, 16.3 ppb], and rose significantly over the 5-h period, peaking 5 h after KNO3 consumption (39.4 ± 4.5 ppb; P < 0.001); however, changes in FeNO were not influenced by age (P = 0.276). CONCLUSIONS: BR is a source of bioavailable dietary nitrate in both young and older adults and can effectively raise nitrite and nitrate concentrations. Lower plasma nitrite and FeNO concentrations were found in older subjects, confirming the impact of ageing on NO bioavailability across different systems.This trial was registered at www.isrctn.com as ISRCTN86706442.
Author(s): Capper TE, Siervo M, Clifford T, Taylor G, Iqbal W, West D, Stevenson EJ
Publication type: Article
Publication status: Published
Journal: The Journal of Nutrition
Year: 2022
Volume: 152
Issue: 1
Pages: 130-139
Print publication date: 01/01/2022
Online publication date: 09/11/2021
Acceptance date: 27/09/2021
Date deposited: 07/02/2022
ISSN (print): 0022-3166
ISSN (electronic): 1541-6100
Publisher: Oxford University Press
URL: https://doi.org/10.1093/jn/nxab354
DOI: 10.1093/jn/nxab354
PubMed id: 34718635
Altmetrics provided by Altmetric