Browse by author
Lookup NU author(s): Dr Ellen MossORCiD, Professor Darren Evans
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Declines in pollinating insects and wildflowers have been well documented in recent years. Climate change is an emerging threat to insect pollinators and their food plants, but little is known about how whole communities of interacting species will be affected or what impacts there may be on ecosystem services such as pollination. Using a novel open-air field experiment, we simulated an increase in temperature of 1.5°C and rainwater of 40% for two growing seasons to investigate how climate change may impact several within-field features of temperate arable agro-ecosystems: (1) wildflower floral resources; (2) insect visitation; (3) flower-visitor network structure; and (4) wildflower seed set. Experimental warming reduced total floral abundance by nearly 40%, and nectar volumes by over 60% for two species. The species richness of the visiting insects and flowering plants (dominated by annuals) were unaffected by warming, and while a negative impact on visitor abundance was observed, this effect appears to have been mediated by different community compositions between years. Warming increased the frequency of visits to flowers and the complexity of the flower-visitor interaction networks. Wildflower seed set was reduced in terms of seed number and/or weight in four of the five species examined. Increased rainwater did not ameliorate any of these effects. These findings demonstrate the adverse impacts that climate warming might have on annual wildflowers in arable systems and the pollinating insects that feed on them, highlighting several mechanisms that could drive changes in community composition over time. The results also reveal how cascading impacts within communities can accumulate to affect ecosystem functioning.
Author(s): Moss ED, Evans DM
Publication type: Article
Publication status: Published
Journal: Frontiers in Plant Science
Year: 2022
Volume: 13
Online publication date: 23/02/2022
Acceptance date: 18/01/2022
Date deposited: 24/02/2022
ISSN (electronic): 1664-462X
Publisher: Frontiers Research Foundation
URL: https://doi.org/10.3389/fpls.2022.826205
DOI: 10.3389/fpls.2022.826205
Altmetrics provided by Altmetric