Browse by author
Lookup NU author(s): Dr Catriona AndersonORCiD, Dr Noel Edwards, Andrew WatsonORCiD, Dr Mike Althaus, Professor David Thwaites
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2022 by the authors.SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Author(s): Anderson CMH, Edwards N, Watson AK, Althaus M, Thwaites DT
Publication type: Article
Publication status: Published
Journal: Biomolecules
Year: 2022
Volume: 12
Issue: 10
Print publication date: 01/10/2022
Online publication date: 01/10/2022
Acceptance date: 29/09/2022
Date deposited: 07/11/2022
ISSN (electronic): 2218-273X
Publisher: MDPI
URL: https://doi.org/10.3390/biom12101404
DOI: 10.3390/biom12101404
PubMed id: 36291613