Toggle Main Menu Toggle Search

Open Access padlockePrints

Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models

Lookup NU author(s): Dr Ana ViñuelaORCiD, Dr Alison Heggie, Donna McEvoy, Professor Mark Walker



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


© 2023, The Author(s). The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.

Publication metadata

Author(s): Allesoe RL, Lundgaard AT, Hernandez Medina R, Aguayo-Orozco A, Johansen J, Nissen JN, Brorsson C, Mazzoni G, Niu L, Biel JH, Brasas V, Webel H, Benros ME, Pedersen AG, Chmura PJ, Jacobsen UP, Mari A, Koivula R, Mahajan A, Vinuela A, Tajes JF, Sharma S, Haid M, Hong M-G, Musholt PB, De Masi F, Vogt J, Pedersen HK, Gudmundsdottir V, Jones A, Kennedy G, Bell J, Thomas EL, Frost G, Thomsen H, Hansen E, Hansen TH, Vestergaard H, Muilwijk M, Blom MT, 't Hart LM, Pattou F, Raverdy V, Brage S, Kokkola T, Heggie A, McEvoy D, Mourby M, Kaye J, Hattersley A, McDonald T, Ridderstrale M, Walker M, Forgie I, Giordano GN, Pavo I, Ruetten H, Pedersen O, Hansen T, Dermitzakis E, Franks PW, Schwenk JM, Adamski J, McCarthy MI, Pearson E, Banasik K, Rasmussen S, Brunak S, Froguel P, Thomas CE, Haussler R, Beulens J, Rutters F, Nijpels G, van Oort S, Groeneveld L, Elders P, Giorgino T, Rodriquez M, Nice R, Perry M, Bianzano S, Graefe-Mody U, Hennige A, Grempler R, Baum P, Staerfeldt H-H, Shah N, Teare H, Ehrhardt B, Tillner J, Dings C, Lehr T, Scherer N, Sihinevich I, Cabrelli L, Loftus H, Bizzotto R, Tura A, Dekkers K, van Leeuwen N, Groop L, Slieker R, Ramisch A, Jennison C, McVittie I, Frau F, Steckel-Hamann B, Adragni K, Thomas M, Pasdar NA, Fitipaldi H, Kurbasic A, Mutie P, Pomares-Millan H, Bonnefond A, Canouil M, Caiazzo R, Verkindt H, Holl R, Kuulasmaa T, Deshmukh H, Cederberg H, Laakso M, Vangipurapu J, Dale M, Thorand B, Nicolay C, Fritsche A, Hill A, Hudson M, Thorne C, Allin K, Arumugam M, Jonsson A, Engelbrechtsen L, Forman A, Dutta A, Sondertoft N, Fan Y, Gough S, Robertson N, McRobert N, Wesolowska-Andersen A, Brown A, Davtian D, Dawed A, Donnelly L, Palmer C, White M, Ferrer J, Whitcher B, Artati A, Prehn C, Adam J, Grallert H, Gupta R, Sackett PW, Nilsson B, Tsirigos K, Eriksen R, Jablonka B, Uhlen M, Gassenhuber J, Baltauss T, de Preville N, Klintenberg M, Abdalla M, Leal Rodríguez C

Publication type: Article

Publication status: Published

Journal: Nature Biotechnology

Year: 2023

Volume: 41

Pages: 399–408

Online publication date: 02/01/2023

Acceptance date: 20/09/2022

Date deposited: 18/01/2023

ISSN (print): 1087-0156

ISSN (electronic): 1546-1696

Publisher: Springer Nature


DOI: 10.1038/s41587-022-01520-x

PubMed id: 36593394


Altmetrics provided by Altmetric


Funder referenceFunder name
115317 (DIRECT)