Browse by author
Lookup NU author(s): Professor Tiago OuteiroORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
© 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Parkinson's disease (PD) biomarkers are needed by both clinicians and researchers (for diagnosis, identifying study populations, and monitoring therapeutic response). Imaging, genetic, and biochemical biomarkers have been widely studied. In recent years, extracellular vesicles (EVs) have become a promising material for biomarker development. Proteins and molecular material from any organ, including the central nervous system, can be packed into EVs and transported to the periphery into easily obtainable biological specimens like blood, urine, and saliva. We performed a systematic review and meta-analysis of articles (published before November 15, 2022) reporting biomarker assessment in EVs in PD patients and healthy controls (HCs). Biomarkers were analyzed using random effects meta-analysis and the calculated standardized mean difference (Std.MD). Several proteins and ribonucleic acids have been identified in EVs in PD patients, but only α-synuclein (aSyn) and leucine-rich repeat kinase 2 (LRRK2) were reported in sufficient studies (n = 24 and 6, respectively) to perform a meta-analysis. EV aSyn was significantly increased in neuronal L1 cell adhesion molecule (L1CAM)–positive blood EVs in PD patients compared to HCs (Std.MD = 1.84, 95% confidence interval = 0.76–2.93, P = 0.0009). Further analysis of the biological sample and EV isolation method indicated that L1CAM-IP (immunoprecipitation) directly from plasma was the best isolation method for assessing aSyn in PD patients. Upcoming neuroprotective clinical trials immediately need peripheral biomarkers for identifying individuals at risk of developing PD. Overall, the improved sensitivity of assays means they can identify biomarkers in blood that reflect changes in the brain. CNS-derived EVs in blood will likely play a major role in biomarker development in the coming years. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Author(s): Xylaki M, Chopra A, Weber S, Bartl M, Outeiro TF, Mollenhauer B
Publication type: Review
Publication status: Published
Journal: Movement Disorders
Year: 2023
Volume: 38
Issue: 9
Pages: 1585-1597
Print publication date: 17/09/2023
Online publication date: 14/07/2023
Acceptance date: 24/05/2023
ISSN (print): 0885-3185
ISSN (electronic): 1531-8257
Publisher: John Wiley and Sons Inc
URL: https://doi.org/10.1002/mds.29497
DOI: 10.1002/mds.29497
PubMed id: 37449706
Data Access Statement: Data sharing not applicable - no new data generated.