Toggle Main Menu Toggle Search

Open Access padlockePrints

Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol

Lookup NU author(s): Professor David XieORCiD

Downloads


Licence

This is the authors' accepted manuscript of an article that has been published in its final definitive form by Elsevier, 2016.

For re-use rights please refer to the publisher's terms and conditions.


Abstract

The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch–starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment.


Publication metadata

Author(s): Zhang B, Xie F, Zhang T, Chen L, Li X, Truss RW, Halley PJ, Shamshina JL, McNally T, Rogers RD

Publication type: Article

Publication status: Published

Journal: Carbohydrate Polymers

Year: 2016

Volume: 146

Pages: 67-79

Print publication date: 01/08/2016

Online publication date: 22/03/2016

Acceptance date: 19/03/2016

Date deposited: 10/10/2023

ISSN (print): 0144-8617

ISSN (electronic): 1879-1344

Publisher: Elsevier

URL: https://doi.org/10.1016/j.carbpol.2016.03.056

DOI: 10.1016/j.carbpol.2016.03.056


Altmetrics

Altmetrics provided by Altmetric


Share