Browse by author
Lookup NU author(s): Professor David XieORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
The influences of molecular, crystalline and granular structures on the biodegradability of compression-molded starch films were investigated. Fungal α-amylase was used as model degradation agent. The substrates comprised varied starch structures obtained by different degrees of acid hydrolysis, different granular sizes using size fractionation, and different degrees of crystallinity by aging for different times (up to 14 days). Two stages are identified for unretrograded films by fitting degradation data using first-order kinetics. Starch films containing larger molecules were degraded faster, but the rate coefficient was independent of the granule size. Retrograded films were degraded much slower than unretrograded ones, with a similar rate coefficient to that in the second stage of unretrograded films. Although initially the smaller molecules or the easily accessible starch chains on the amorphous film surface were degraded faster, the more ordered structure (resistant starch) formed from retrogradation, either before or during enzymatic degradation, strongly inhibits film biodegradation.
Author(s): Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG
Publication type: Article
Publication status: Published
Journal: Carbohydrate Polymers
Year: 2015
Volume: 122
Pages: 115-122
Print publication date: 20/05/2015
Online publication date: 13/01/2015
Acceptance date: 06/01/2015
Date deposited: 10/10/2023
ISSN (print): 0144-8617
ISSN (electronic): 1879-1344
Publisher: Elsevier
URL: https://doi.org/10.1016/j.carbpol.2015.01.011
DOI: 10.1016/j.carbpol.2015.01.011
Altmetrics provided by Altmetric