Toggle Main Menu Toggle Search

Open Access padlockePrints

Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11

Lookup NU author(s): Dr Kaveh Emami, Tibor Nagy, Emeritus Professor Harry Gilbert

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Pseudomonas cellulosa is a highly efficient xylan-degrading bacterium. Genes encoding five xylanases, and several accessory enzymes, which remove the various side chains that decorate the xylan backbone, have been isolated from the pseudomonad and characterized. The xylanase genes consist of xyn10A, xyn10B, xyn10C, xyn10D, and xyn11A, which encode Xyn10A, Xyn10B, Xyn10C, Xyn10D, and Xyn11A, respectively. In this study a sixth xylanase gene, xyn11B, was isolated which encodes a 357-residue modular enzyme, designated Xyn11B, comprising a glycoside hydrolase family 11 catalytic domain appended to a C-terminal X-14 module, a homologue of which binds to xylan. Localization studies showed that the two xylanases with glycoside hydrolase family (GH) 11 catalytic modules, Xyn11A and Xyn11B, are secreted into the culture medium, whereas Xyn10C is membrane bound. xyn10C, xyn10D, xyn11A, and xyn11B were all abundantly expressed when the bacterium was cultured on xylan or β-glucan but not on medium containing mannan, whereas glucose repressed transcription of these genes. Although all of the xylanase genes were induced by the same polysaccharides, temporal regulation of xyn11A and xyn11B was apparent on xylan-containing media. Transcription of xyn11A occurred earlier than transcription of xyn11B, which is consistent with the predicted mode of action of the encoded enzymes. Xyn11A, but not Xyn11B, exhibits xylan esterase activity, and the removal of acetate side chains is required for xylanases to hydrolyze the xylan backbone. A transposon mutant of P. cellulosa in which xyn11A and xyn11B were inactive displayed greatly reduced extracellular but normal cell-associated xylanase activity, and its growth rate on medium containing xylan was indistinguishable from wild-type P. cellulosa. Based on the data presented here, we propose a model for xylan degradation by P. cellulosa in which the GH11 enzymes convert decorated xylans into substituted xylooligosaccharides, which are then hydrolyzed to their constituent sugars by the combined action of cell-associated GH10 xylanases and side chain-cleaving enzymes.


Publication metadata

Author(s): Emami K, Nagy T, Fontes CMGA, Ferreira LMA, Gilbert HJ

Publication type: Article

Publication status: Published

Journal: Journal of Bacteriology

Year: 2002

Volume: 184

Issue: 15

Pages: 4124-4133

ISSN (print): 0021-9193

ISSN (electronic): 1098-5530

Publisher: American Society for Microbiology

URL: http://dx.doi.org/10.1128/JB.184.15.4124-4133.2002

DOI: 10.1128/JB.184.15.4124-4133.2002

PubMed id: 12107129


Altmetrics

Altmetrics provided by Altmetric


Share