Browse by author
Lookup NU author(s): Professor Mark Walker
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Variation in CAPN10, the gene encoding the ubiquitously expressed cysteine protease calpain-10, has been associated with type 2 diabetes in Mexican Americans and in two northern-European populations, from Finland and Germany. We have studied CAPN10 in white subjects of British/Irish ancestry, using both family-based and case-control studies. In 743 sib pairs, there was no evidence of linkage at the CAPN10 locus, which thereby excluded it as a diabetes-susceptibility gene, with an overall sib recurrence risk, lambda (S), of 1.25. We examined four single-nucleotide polymorphisms (SNP-44, -43, -19, and -63) previously either associated with type 2 diabetes or implicated in transcriptional regulation of calpain-10 expression. We did not find any association between SNP-43, -19, and -63, either individually or as part of the previously described risk haplotypes. We did, however, observe significantly increased (P = .033) transmission of the less common C allele at SNP-44, to affected offspring in parents-offspring trios (odds ratio 1.6). An independent U.K. case-control study and a small discordant-sib study did not show significant association individually. In a combined analysis of all U.K. studies (P = .015) and in combination with a Mexican American study (P = .004), the C allele at SNP-44 is associated with type 2 diabetes. Sequencing of the coding region of CAPN10 in a group of U.K. subjects revealed four coding polymorphisms-L34V, T504A, R555C, and V666I. The T504A polymorphism was in perfect linkage disequilibrium with the diabetes-associated C allele at SNP-44, suggesting that the synthesis of a mutant protein and/or altered transcriptional regulation could contribute to diabetes risk. In conclusion, we were not able to replicate the association of the specific calpain-10 alleles identified by Horikawa et al. but suggest that other alleles at this locus may increase type 2 diabetes risk in the U.K. population.
Author(s): Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O'Rahilly S, Rao PVS, Bennett AJ, Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI, Hattersley AT
Publication type: Article
Publication status: Published
Journal: American Journal of Human Genetics
Year: 2001
Volume: 69
Issue: 3
Pages: 544-552
ISSN (print): 0002-9297
ISSN (electronic): 1537-6605
Publisher: Cell Press
URL: http://dx.doi.org/10.1086/323315
DOI: 10.1086/323315
Altmetrics provided by Altmetric