Toggle Main Menu Toggle Search

Open Access padlockePrints

Structural and electrical characterisation of ion-implanted strained silicon

Lookup NU author(s): Dr Nick Bennett, Professor Nick Cowern


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The production of low resistance ultra-shallow junctions for e.g. source/drain extensions using low energy ion-implantation will be required for future CIVICS devices [H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi. Y. Ochiai, T. Mogami, T. Kunio, Trans. Electron Devices 49 (2002) 89-94]. This architecture will require implants which demonstrate high electrical activation and nm range depth profiles. We investigate the properties of Sb implants in tensile strained silicon due to their potential to satisfy these criteria and the mobility enhancements associated with tensile strained silicon. Low energy (in this case 2 keV) implants coupled with Sb's large atomic radius are capable of providing similar to 10 run implant depths. In addition to this. Sb demonstrates higher electrical activation in the presence of tensile strain, when compared with the more traditional n-type dopant As [N.S. Bennett, N.E.B. Cowern, A.J. Smith, R.M. Gwilliam, B.J.Sealy, LO'Reilly, P.J. McNally. G. Cooke, H. Kheyrandish, Appl. Phys. Lett. 89(2006) 182122]. We now report on the initial results of an ongoing systematic study over a wide silicon tensile strain range (from 0.4% to 1.25% strain) in order to establish clear strain-related trends. Graded Si1-xGex virtual substrates (VS) with 0.1 23% (i.e. epsilon > 0.9%) we find clear evidence of tilt in the SiGe VS, which impacts on the quality of the strained Si. Additionally, stacking faults have been detected non-destructively in the higher strain samples (epsilon = 1.25%. VS = Si0.7Ge0.3) using SXRT in transmission mode. (C) 2008 Elsevier B.V. All rights reserved.

Publication metadata

Author(s): Horan K, Lankinen A, O'Reilly L, Bennett NS, McNally PJ, Sealy BJ, Cowern NEB, Tuomi TO

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Materials Science and Engineering B: Advanced Functional Solid-state Materials. E-MRS 2008 symposium I, Front-End Junction and Contact Formation in Future Silicon/Germanium based Devices

Year of Conference: 2008

Pages: 118-121

ISSN: 1873-4944

Publisher: Elsevier S.A.


DOI: 10.1016/j.mseb.2008.09.007

Library holdings: Search Newcastle University Library for this item