Toggle Main Menu Toggle Search

Open Access padlockePrints

A novel model of urinary tract differentiation, tissue regeneration, and disease: Reprogramming human prostate and bladder cells into induced pluripotent stem cells

Lookup NU author(s): Dr Mohammad Moad, Dr Deepali Pal, Dr Anastasia Hepburn, Dr Stuart Williamson, Laura WilsonORCiD, Professor Majlinda LakoORCiD, Professor Lyle Armstrong, Dr Sarah FordhamORCiD, Dr Jane Carr-Wilkinson, Professor Craig Robson, Professor Rakesh Heer

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Background: Primary culture and animal and cell-line models of prostate and bladder development have limitations in describing human biology, and novel strategies that describe the full spectrum of differentiation from foetal through to ageing tissue are required. Recent advances in biology demonstrate that direct reprogramming of somatic cells into pluripotent embryonic stem cell (ESC)-like cells is possible. These cells, termed induced pluripotent stem cells (iPSCs), could theoretically generate adult prostate and bladder tissue, providing an alternative strategy to study differentiation.Objective: To generate human iPSCs derived from normal, ageing, human prostate (Pro-iPSC), and urinary tract (UT-iPSC) tissue and to assess their capacity for lineage-directed differentiation. Design, Setting, and Participants: Prostate and urinary tract stroma were transduced with POU class 5 homeobox 1 (POU5F1; formerly OCT4), SRY (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (gut) (KLF4), and v-myc myelocytomatosis viral oncogene homolog (avian) (MYC, formerly C-MYC) genes to generate iPSCs. Outcome Measurements and Statistical Analysis: The potential for differentiation into prostate and bladder lineages was compared with classical skin-derived iPSCs. The student t test was used. Results and Limitations: Successful reprogramming of prostate tissue into Pro-iPSCs and bladder and ureter into UT-iPSCs was demonstrated by characteristic ESC morphology, marker expression, and functional pluripotency in generating all three germ-layer lineages. In contrast to conventional skin-derived iPSCs, Pro-iPSCs showed a vastly increased ability to generate prostate epithelial-specific differentiation, as characterised by androgen receptor and prostate-specific antigen induction. Similarly, UT-iPSCs were shown to be more efficient than skin-derived iPSCs in undergoing bladder differentiation as demonstrated by expression of urothelial-specific markers: uroplakins, claudins, and cytokeratin; and stromal smooth muscle markers: α-smooth-muscle actin, calponin, and desmin. These disparities are likely to represent epigenetic differences between individual iPSC lines and highlight the importance of organ-specific iPSCs for tissue-specific studies.


Publication metadata

Author(s): Moad M, Pal D, Hepburn AC, Williamson SC, Wilson L, Lako M, Armstrong L, Hayward SW, Franco O, Cates J, Fordham SE, Przyborski S, Carr-Wilkinson J, Robson CN, Heer R

Publication type: Article

Publication status: Published

Journal: European Urology

Year: 2013

Volume: 64

Issue: 5

Pages: 753-761

Print publication date: 06/04/2013

ISSN (print): 0302-2838

ISSN (electronic): 1421-993X

Publisher: Elsevier

URL: http://dx.doi.org/10.1016/j.eururo.2013.03.054

DOI: 10.1016/j.eururo.2013.03.054

Notes: Moad and Pal = Both authors contributed equally to this work. Robson and Heer = Joint senior authors.


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
Cancer Research UK
EU
JGWP Foundation
R01 DK067049NIH

Share