Toggle Main Menu Toggle Search

Open Access padlockePrints

Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype

Lookup NU author(s): Ramada Khasawneh, Dr Ralf KistORCiD, Dr Rachel Queen, Raf Hussain, Dr Jonathan Coxhead, Dr Heiko Peters, Dr Helen PhillipsORCiD, Dr Simon BamforthORCiD



This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


© 2021, The Author(s). Background: Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. Results: In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9–/– mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9–/– mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9–/– mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9–/– mice. Conclusions: Msx1 haploinsufficiency mitigates the arch artery defects in Pax9–/– mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9–/– mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.

Publication metadata

Author(s): Khasawneh RR, Kist R, Queen R, Hussain R, Coxhead J, Schneider JE, Mohun TJ, Zaffran S, Peters H, Phillips HM, Bamforth SD

Publication type: Article

Publication status: Published

Journal: BMC Developmental Biology

Year: 2021

Volume: 21

Online publication date: 06/10/2021

Acceptance date: 23/09/2021

Date deposited: 18/10/2021

ISSN (electronic): 1471-213X

Publisher: BioMed Central Ltd


DOI: 10.1186/s12861-021-00245-5


Altmetrics provided by Altmetric


Funder referenceFunder name
PG/16/39/32115British Heart Foundation