Toggle Main Menu Toggle Search

Open Access padlockePrints

Raman scattering studies of ultrashallow Sb implants in strained Si

Lookup NU author(s): Dr Nick Bennett, Professor Nick Cowern


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Sheet resistance (R-s) reductions are presented for antimony doped layers in strained Si. We use micro-Raman spectroscopy to characterise the impact of a low energy (2 keV) Sb implantation into a thin strained Si layer on the crystalline quality and resultant stress in the strained Si. The use of 325 nm UV laser light enables us to extract information from the top similar to 9 nm of the strained Si layer. Prior to implantation the Si layer is fully strained with a tensile stress value similar to 1.41 GPa, in agreement with the calculated theoretical maximum on a strain relaxed buffer with 17% Ge content. There is a clear decrease in the intensity of the Si Raman signal following Sb implantation. The lattice damage and lattice recovery achieved by subsequent rapid thermal anneal (RTA) is quantified using the amplitude and full width at half maximum (FWHM) of the crystalline Si peak. The shift of the Raman Si peak is a key parameter in the interpretation of the spectra. The ion-implanted sample is studied in terms of a phonon coherence length confinement model. Carrier concentration effects are seen to play a role in the Raman shift following electrical activation of the Sb atoms by RTA.

Publication metadata

Author(s): O'Reilly L, Bennett NS, McNally PJ, Sealy BJ, Cowern NEB, Lankinen A, Tuomi TO

Publication type: Article

Publication status: Published

Journal: Journal of Materials Science: Materials in Electronics

Year: 2008

Volume: 19

Issue: 4

Pages: 305-309

Print publication date: 01/04/2008

ISSN (print): 0957-4522

ISSN (electronic): 1573-482X

Publisher: Springer New York LLC


DOI: 10.1007/s10854-007-9339-9

Notes: The paper demonstrates that carrier concentration effects play a key role in the Raman shift for highly doped crystalline silicon.


Altmetrics provided by Altmetric