Browse by author
Lookup NU author(s): Dr Francesco Zummo, Merilin Georgiou, Kirsty Cullen, Minna Honkanen-Scott, Professor James Shaw, Professor Penny Lovat, Dr Catherine ArdenORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Macroautophagy/autophagy is critical for the regulation of pancreatic β-cell mass and its deregulation has been implicated in the pathogenesis of type 2 diabetes (T2D). We have previously shown that treatment of pancreatic β-cells with the GLP1R (glucagon like peptide 1 receptor) agonist exendin-4 stimulates autophagic flux in a setting of chronic nutrient excess. The aim of this study was to identify the underlying pathways contributing to enhanced autophagic flux. Pancreatic β-cells (INS-1E),mouse and human islets were treated with glucolipotoxic stress (0.5 mM palmitate and 25 mM glucose) in the presence of exendin-4. Consistent with our previous work, exendin-4 stimulated autophagic flux. Using chemical inhibitors and siRNA knockdown, we identified RAPGEF4/EPAC2 (Rap guanine nucleotide exchange factor 4) and downstream calcium signaling to be essential for regulation of autophagic flux by exendin-4. This pathway was independent of AMPK and MTOR signaling. Further analysis identified PPP3/calcineurin and its downstream regulator TFEB (transcription factor EB) as key proteins mediating exendin-4 induced autophagy. Importantly, inhibition of this pathway prevented exendin-4-mediated cell survival and overexpression of TFEB mimicked the cell protective effects of exendin-4 in INS-1E and human islets. Moreover, treatment of db/db mice with exendin-4 for 21 days increased the expression of lysosomal markers within the pancreatic islets. Collectively our data identify the RAPGEF4/EPAC2-calcium-PPP3/calcineurin-TFEB axis as a key mediator of autophagic flux, lysosomal function and cell survival in pancreatic β-cells. Pharmacological modulation of this axis may offer a novel therapeutic target for the treatment of T2D. Abbreviations: AKT1/protein kinase B: AKT serine/threonine kinase 1; AMPK: 5’ AMP-activated protein kinase; CAMKK: calcium/calmodulin-dependent protein kinase kinase; cAMP: cyclic adenosine monophosphate; CASP3: caspase 3; CREB: cAMP response element-binding protein; CTSD: cathepsin D; Ex4: exendin-4(1-39); GLP-1: glucagon like peptide 1; GLP1R: glucagon like peptide 1 receptor; GLT: glucolipotoxicity; INS: insulin; MTOR: mechanistic target of rapamycin kinase; NFAT: nuclear factor of activated T-cells; PPP3/calcineurin: protein phosphatase 3; PRKA/PKA: protein kinase cAMP activated; RAPGEF3/EPAC1: Rap guanine nucleotide exchange factor 3; RAPGEF4/EPAC2: Rap guanine nucleotide exchange factor 4; SQSTM1/p62: sequestosome 1; T2D: type 2 diabetes; TFEB: transcription factor EB.
Author(s): Zummo FP, Krishnanda SI, Georgiou M, O'Harte FPM, Parthsarathy V, Cullen KS, Honkanen-Scott M, Shaw JAM, Lovat PE, Arden C
Publication type: Article
Publication status: Published
Journal: Autophagy
Year: 2022
Volume: 18
Issue: 4
Pages: 799-815
Online publication date: 02/08/2021
Acceptance date: 12/07/2021
Date deposited: 29/09/2021
ISSN (print): 1554-8627
ISSN (electronic): 1554-8635
Publisher: Taylor and Francis Ltd.
URL: https://doi.org/10.1080/15548627.2021.1956123
DOI: 10.1080/15548627.2021.1956123
Altmetrics provided by Altmetric