Toggle Main Menu Toggle Search

Open Access padlockePrints

Prion-like α-synuclein pathology in the brain of infants with Krabbe disease

Lookup NU author(s): Chris Hatton, Dr David Koss, Dr Lauren Walker, Professor Tiago Outeiro, Professor Johannes Attems, Professor Bobby McFarland, Dr Rob Forsyth, Dr Daniel Erskine

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).


Abstract

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene which causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (N = 4) compared to infant controls (N = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Publication metadata

Author(s): Hatton C, Ghanem SS, Koss DJ, Abdi IY, Gibbons E, Guerreiro R, Bras J, International DLB Genetics Consortium, Walker L, Gelpi E, Heywood W, Outeiro TF, Attems J, McFarland R, Forsyth R, El-Agnaf OM, Erskine D

Publication type: Article

Publication status: Published

Journal: Brain

Year: 2022

Online publication date: 06/01/2022

Acceptance date: 10/12/2021

Date deposited: 13/01/2022

ISSN (print): 0006-8950

ISSN (electronic): 1460-2156

Publisher: Oxford University Press

URL: https://doi.org/10.1093/brain/awac002

DOI: 10.1093/brain/awac002


Altmetrics

Altmetrics provided by Altmetric


Actions

Find at Newcastle University icon    Link to this publication


Share